All-optical nonlinear Compton scattering performed with a multi-petawatt laser (2025)

  • Aoyama, T., Hayakawa, M., Kinoshita, T. & Nio, M. Tenth-order QED contribution to the electron g − 2 and an improved value of the fine structure constant. Phys. Rev. Lett. 109, 111807 (2012).

    Article ADS Google Scholar

  • Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Phys. Plasmas 27, 050601 (2020).

    Article ADS Google Scholar

  • Di Piazza, A. et al. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177–1228 (2012).

    Article Google Scholar

  • Ruffini, R., Vereshchagin, G. & Xue, S. S. Electron–positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rep. 487, 1–140 (2010).

    Article ADS Google Scholar

  • Uzdensky, D. A. & Rightley, S. Plasma physics of extreme astrophysical environments. Rep. Prog. Phys. 77, 036902 (2014).

    Article ADS Google Scholar

  • Wistisen, T. N., Di Piazza, A., Knudsen, H. V. & Uggerhøj, U. I. Experimental evidence of quantum radiation reaction in aligned crystals. Nat. Commun. 9, 795 (2018).

    Article ADS Google Scholar

  • Nielsen, C. F. et al. Precision measurement of trident production in strong electromagnetic fields. Phys. Rev. Lett. 130, 071601 (2023).

    Article ADS Google Scholar

  • Gonoskov, A., Blackburn, T. G., Marklund, M. & Bulanov, S. S. Charged particle motion and radiation in strong electromagnetic fields. Rev. Mod. Phys. 94, 045001 (2022).

    Article ADS MathSciNet Google Scholar

  • Yakimenko, V. et al. Prospect of studying nonperturbative QED with beam-beam collisions. Phys. Rev. Lett. 122, 190404 (2019).

    Article ADS Google Scholar

  • Sauter, F. Über das verhalten eines elektrons im homogenen elektrischen feld nach der relativistischen theorie Diracs. Z. Phys. 69, 742–764 (1931).

    Article ADS Google Scholar

  • Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951).

    Article MathSciNet Google Scholar

  • Yoon, J. W. et al. Realization of laser intensity over 1023 W/cm2. Optica 8, 630–635 (2021).

    Article ADS Google Scholar

  • Bula, C. et al. Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76, 3116–3119 (1996).

    Article ADS Google Scholar

  • Danson, C. N. et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 7, e54 (2019).

    Article Google Scholar

  • Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).

    Article ADS Google Scholar

  • Sarri, G. et al. Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering. Phys. Rev. Lett. 113, 224801 (2014).

    Article ADS Google Scholar

  • Yan, W. et al. High-order multiphoton Thomson scattering. Nat. Photonics 11, 514–520 (2017).

    Article Google Scholar

  • Cole, J. M. et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Phys. Rev. X 8, 011020 (2018).

    MathSciNet Google Scholar

  • Poder, K. et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X 8, 031004 (2018).

    Google Scholar

  • Sung, J. H. et al. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Lett. 42, 2058–2061 (2017).

    Article ADS Google Scholar

  • Ritus, V. I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res. 6, 497–617 (1985).

    Article Google Scholar

  • Di Piazza, A. et al. Implementing nonlinear Compton scattering beyond the local-constant-field approximation. Phys. Rev. A 98, 012134 (2018).

    Article ADS Google Scholar

  • Yang, X. et al. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question. Sci. Rep. 7, 43910 (2017).

    Article ADS Google Scholar

  • Cipiccia, S. et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 7, 867–871 (2011).

    Article Google Scholar

  • Amaro, Ó. & Marija, V. Optimal laser focusing for positron production in laser-electron scattering. New J. Phys. 23, 115001 (2021).

    Article ADS Google Scholar

  • Albert, F. & Thomas, A. G. Applications of laser wakefield accelerator-based light sources. Plasma Phys. Control. Fusion 58, 103001 (2016).

    Article ADS Google Scholar

  • Placzek, W. et al. Gamma factory at CERN—novel research tools made of light. Acta Phys. Pol. B 50, 1191 (2019).

    Article ADS Google Scholar

  • Blackburn, T. G. & Marklund, M. Nonlinear Breit–Wheeler pair creation with bremsstrahlung γ-rays. Plasma Phys. Control. Fusion 60, 054009 (2018).

    Article ADS Google Scholar

  • Burke, D. L. et al. Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79, 1626–1629 (1997).

    Article Google Scholar

  • Mirzaie, M. et al. Demonstration of self-truncated ionization injection for GeV electron beams. Sci. Rep. 5, 14659 (2015).

    Article ADS Google Scholar

  • Kim, H. T. et al. Stable multi-GeV electron accelerator driven by waveform-controlled PW laser pulses. Sci. Rep. 7, 10203 (2017).

    Article ADS Google Scholar

  • Hojbota, C. I. et al. Accurate single-shot measurement technique for the spectral distribution of GeV electron beams from a laser wakefield accelerator. AIP Adv. 9, 085229 (2019).

    Article ADS Google Scholar

  • Kim, D. Y. et al. Optical synchronization technique for all-optical Compton scattering. Rev. Sci. Instrum. 93, 113001 (2022).

    Article ADS Google Scholar

  • Fabjan, C. W. & Fabiola, G. Calorimetry for particle physics. Rev. Mod. Phys. 75, 1243–1286 (2003).

    Article Google Scholar

  • Hojbota, C. I. et al. High-energy betatron source driven by a 4-PW laser with applications to non-destructive imaging. Eur. Phys. J. A 59, 247 (2023).

    Article ADS Google Scholar

  • Agostinelli, S. et al. GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).

    ADS Google Scholar

  • Behm, K. T. et al. A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV. Rev. Sci. Instrum. 89, 113303 (2018).

    Article ADS Google Scholar

  • Haden, D. et al. High energy X-ray Compton spectroscopy via iterative reconstruction. Nucl. Instrum. Methods Phys. Res. A 951, 163032 (2020).

    Article Google Scholar

  • Nikishov, A. I. & Ritus, V. I. Pair production by a photon and photon emission by an electron in the field of an intense electromagnetic wave and in a constant field. Sov. Phys. JETP 25, 1135 (1967).

    ADS Google Scholar

  • Baier, V. & Katkov, V. Quantum effects in magnetic bremsstrahlung. Phys. Lett. A 25, 492–493 (1967).

    Article ADS Google Scholar

  • Vranic, M., Martins, J. L., Vieira, J., Fonseca, R. A. & Silva, L. O. All-optical radiation reaction at 1021 W/cm2. Phys. Rev. Lett. 113, 134801 (2014).

    Article ADS Google Scholar

  • Amaro, O. & Vranic, M. QScatter: numerical framework for fast prediction of particle distributions in electron-laser scattering. Plasma Phys. Control. Fusion 66, 045006 (2024).

    Article ADS Google Scholar

  • Fonseca, R. A. et al. OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In Proc. Computational Science — ICCS 2002. Lecture Notes in Computer Science Vol. 2331 (eds Sloot, P. M. A. et al.) 342–351 (Springer, 2002).

  • Vranic, M., Grismayer, T., Fonseca, R. A. & Silva, L. O. Quantum radiation reaction in head-on laser-electron beam interaction. New J. Phys. 18, 073035 (2016).

    Article ADS Google Scholar

  • Vranic, M., Klimo, O., Korn, G. & Weber, S. Multi-GeV electron–positron beam generation from laser-electron scattering. Sci. Rep. 8, 4702 (2018).

    Article ADS Google Scholar

  • Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004).

    Article Google Scholar

  • All-optical nonlinear Compton scattering performed with a multi-petawatt laser (2025)
    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Ray Christiansen

    Last Updated:

    Views: 5523

    Rating: 4.9 / 5 (69 voted)

    Reviews: 84% of readers found this page helpful

    Author information

    Name: Ray Christiansen

    Birthday: 1998-05-04

    Address: Apt. 814 34339 Sauer Islands, Hirtheville, GA 02446-8771

    Phone: +337636892828

    Job: Lead Hospitality Designer

    Hobby: Urban exploration, Tai chi, Lockpicking, Fashion, Gunsmithing, Pottery, Geocaching

    Introduction: My name is Ray Christiansen, I am a fair, good, cute, gentle, vast, glamorous, excited person who loves writing and wants to share my knowledge and understanding with you.